Altitudinal changes in a bacterial community on Gulkana Glacier in Alaska.

نویسندگان

  • Takahiro Segawa
  • Nozomu Takeuchi
  • Kazunari Ushida
  • Hiroshi Kanda
  • Shiro Kohshima
چکیده

To clarify altitudinal changes in the bacterial community on Gulkana Glacier in Alaska, we analyzed bacterial 16S rRNA gene by low-cycle PCR amplification, denaturing gradient gel electrophoresis (DGGE), and culturing in a snowmelt medium at 4°C. Low-cycle PCR-based cloning revealed the presence of 100 bacterial OTUs; however, 41 OTUs were identified only in a single clone, suggesting that their abundance was limited because of difficulty in predominating on the glacier. In contrast, 17 major OTUs accounted for 57-87% of the clone library at each site, suggesting that they accounted for the major part of the bacteria on the glacier. In addition, five of the 17 OTUs were included in the 21 OTUs cultured in the snowmelt medium. Based on the dominant phylotypes and DGGE results, the bacterial community on the glacier could be divided into three types, corresponding to the snow-covered, snow- and ice-covered, and bare-ice areas of the glacier. Our results suggest that a relatively limited number of bacteria predominate and that each phylotype is adapted to a distinct set of conditions on the glacier.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glacier-specific elevation changes in parts of western Alaska

The meltwater from glaciers in Alaska contributes strongly to global sea-level rise, but accurate determination is challenging as only two comparatively small glaciers have long-term measurements of annual mass balance (Gulkana and Wolverine). Simple upscaling of their values to the entire region is error-prone as their representativeness is unknown and might be biased. Alternatively, differenc...

متن کامل

Implications for the dynamic health of a glacier from comparison of conventional and reference-surface balances

Conventional and reference-surface mass-balance data from Gulkana and Wolverine Glaciers, Alaska, USA, are used to address the questions of how rapidly these glaciers are adjusting (or ‘responding’) to climate, whether their responses are stable, and whether the glaciers are likely to survive in today’s climate. Instability means that a glacier will eventually vanish, or at least become greatly...

متن کامل

Climate downscaling for estimating glacier mass balances in northwestern North America: Validation with a USGS benchmark glacier

[1] An atmosphere/glacier modeling system is described for estimating the mass balances of glaciers in both current and future climate in order to estimate their probable future contributions to rising sea level. Dynamically downscaled output from a regional atmospheric model, driven by global atmospheric reanalysis, is used to force a precipitationtemperature-area-altitude (PTAA) glacier mass ...

متن کامل

Bacterial Microbiota Associated with the Glacier Ice Worm Is Dominated by Both Worm-Specific and Glacier-Derived Facultative Lineages

The community structure of bacteria associated with the glacier ice worm Mesenchytraeus solifugus was analyzed by amplicon sequencing of 16S rRNA genes and their transcripts. Ice worms were collected from two distinct glaciers in Alaska, Harding Icefield and Byron Glacier, and glacier surfaces were also sampled for comparison. Marked differences were observed in bacterial community structures b...

متن کامل

A Review of Lichenometric Dating of Glacial Moraines in Alaska

In Alaska, lichenometry continues to be an important technique for dating late Holocene moraines. Research completed during the 1970s through the early 1990s developed lichen dating curves for five regions in the Arctic and subarctic mountain ranges beyond altitudinal and latitudinal treelines. Although these dating curves are still in use across Alaska, little progress has been made in the pas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Microbes and environments

دوره 25 3  شماره 

صفحات  -

تاریخ انتشار 2010